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Abstract

Let G = (V (G), E(G)) be a simple graph of order n and let i be a positive integer.

Xi ⊆ V (G) is called an i-packing if vertices in Xi are pairwise distance more than

i apart. A packing coloring of G is a partition X = {X1, X2, X3, . . . , Xk} of V (G)

such that each color class Xi is an i-packing. The minimum order k of a packing

coloring is called the packing chromatic number of G, denoted by χρ(G). Let Gn,d

denote the random d-regular graph on n vertices. In this thesis, we show that for any

fixed d ≥ 4, there exists a positive constant cd such that

P(χρ(Gn,d) ≥ cdn) = 1− on(1).

Keywords: packing chromatic number, random d-regular graphs, configuration

model
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Chapter 1

Basic Definitions

A graph G is a finite nonempty set of objects, called vertices (singular vertex), together

with a (possibly empty) set of unordered pairs of distinct vertices, called edges. The

set of vertices of the graph G is called the vertex set of G, denoted by V (G), and the

set of edges is called the edge set of G, denoted by E(G). The edge e = {u, v} is said

to join the vertices u and v. If e = {u, v} is an edge of G, then u and v are adjacent

vertices, while u and e are incident, as are v and e. Furthermore, if e1 and e2 are

distinct edges of G incident with a common vertex, then e1 and e2 are adjacent edges.

It is convenient to henceforth denote an edge by uv or vu rather than by {u, v}. The

cardinality of the vertex set of a graph G is called the order of G and is denoted by

n(G), or more simply by n when the graph under consideration is clear, while the

cardinality of its edge set is the size of G, denoted by m(G) or m. A (n,m)-graph has

order n and size m. The graph of order n = 1 is called the trivial graph. A nontrivial

graph has at least two vertices.

A subgraph of a graph G is a graph all of whose vertices belong to V (G) and all

of whose edges belong to E(G). If H is a subgraph of G, then we write H ⊆ G. If a

subgraph H of G contains all the vertices of G, then H is called a spanning subgraph

of G.

Let v be a vertex of a graph G. The degree of v is the number of edges of G incident

with v. The degree of v is denoted by degGv, or simply dG(v). The minimum degree

of G is the minimum degree among the vertices of G and is denoted δ(G), while the

maximum degree of G is the maximum degree among the vertices of G and is denoted

1
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∆(G).

A vertex is called odd or even depending on whether its degree is odd or even. A

vertex of degree 0 in a graph G is called an isolated vertex and a vertex of degree 1

is an end-vertex of G. Of particular importance for us will be regular graphs. We say

that a graph is regular if all its vertices have the same degree. In particular, if the

degree of each vertex is d, then the graph is regular of degree d or is d-regular.

We say two graphs, G and H, are isomorphic if there is a one-to-one mapping φ

from V (G) onto V (H) such that φ preserves adjacency; that is, uv ∈ E(G) if and

only if φ(u)φ(v) ∈ E(H). If G and H are isomorphic, then we write G ∼= H.

A graph G is connected if there exists a path in G between any two of its vertices,

and is disconnected otherwise. Every disconnected graph can be partitioned into

connected subgraphs, called components. A component of a graph G is a maximal

connected subgraph. Two vertices u and v in a graph G are connected if u = v, or if

u 6= v and there is a u − v path in G. The number of components of G is denoted

k(G); of course, k(G) = 1 if and only if G is connected.

Let u and v be two (not necessarily distinct) vertices of a graph G. A u-v walk in

G is a finite, alternating sequence of vertices and edges that begin with the vertex u

and ends with the vertex v and in which each edge of the sequence joins the vertex

that precedes it to the vertex that follows it in the sequence. The number of edges in

the walk is called the length of the walk. If all the edges of a walk are different, then

the walk is called a trail. If, in addition, all the vertices are different, then the trail

is called a path. A u-v walk is closed if u = v and open otherwise. A closed walk in

which all the edges are different is a closed trail. A closed trail which contains at least

three vertices is called a circuit. A circuit which does not repeat any vertices (except

the first and last) is called a cycle. The length of a cycle (or circuit) is the number

of edges in the cycle (or circuit). A cycle of length n is an n-cycle. A cycle is even if

its length is even; other wise it is odd. The minimum length of a cycle contained in a

2
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graph G is the girth of G, denoted g(G). The maximum length of a cycle in G is the

circumference. If G contains no cycle then we define g(G) =∞ and its circumference

to be 0.

An acyclic graph, one that does not contain a cycle, is called a forest. If a forest

is connected, we say it is a tree. The vertices of degree 1 in a tree are called its leaves.

For a connected graph G, we define the distance d(u,v) between two vertices u and

v as the minimum of the lengths of the u−v paths of G. If G is a disconnected graph,

then the distance between two vertices in the same component ofG is defined as above.

However, if u and v belong to different components of G, then d(u, v) is undefined.

The greatest distance between any two vertices in G is the diameter of G, denoted

by diam(G). It is easy to see that if G contains a cycle then g(G) ≤ 2diam(G) + 1.

We define Gi = (V,Ei) where Ei = {(u, v)|d(u, v) ≤ i in G}.

The open neighborhood of a vertex v is N(v) = {u ∈ V |uv ∈ E}. In general, we

define the open neighborhood of a subset X ⊆ V by N(X) = {u ∈ V \X|∃v ∈ X, uv ∈

E(G)}. The closed neighborhood of a vertex v is N [v] = {v} ∪ N(v) and in general,

the closed neighborhood of a subset X ⊆ V by N [X] = X ∪N(X).

A finite probability space is a finite set Ω 6= ∅ together with a function P : Ω→ R≥0

such that (1) for all ω ∈ Ω, P(ω) > 0 and (2) ∑ω∈Ω P(ω) = 1. The set Ω is called

the sample space and the function P is the probability distribution. An event E is a

subset of Ω. For E ⊆ Ω, we define the probability of E to be P(E) = ∑
ω∈E P(ω).

We note that P(∅) = 0 and P(Ω) = 1.

3
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Chapter 2

The Packing Chromatic Number

Let G = (V (G), E(G)) be a simple graph of order n and let i be a positive integer.

Xi ⊆ V (G) is called an i-packing if vertices in Xi are pairwise distance more than

i apart. A packing coloring of G is a partition X = {X1, X2, X3, . . . , Xk} of V (G)

such that each color class Xi is an i-packing. Hence, two vertices may be assigned

the same color if the distance between them is greater than the color. The minimum

order k of a packing coloring is called the packing chromatic number of G, denoted

by χρ(G). Note that every packing coloring is a proper coloring.

Packing colorings were inspired by a frequency assignment problem in broadcast-

ing. The distance between broadcasting stations is directly related to the frequency

they may receive, since two stations may only be assigned the same frequency if they

are located far enough apart for their frequencies not to interfere with each other.

This coloring was first introduced by Goddard, Harris, Hedetniemi, Hedetniemi, and

Rall [11] where it was called broadcast coloring. Brešar, Klavžar and Rall [5] were

the first to use the term packing coloring.

Goddard et al. [11] investigated, amongst others, the packing chromatic number

of paths, trees, and the infinite square lattice, Z2. They found that for the square

lattice, 9 ≤ χρ(Z2) ≤ 23. In fact, the packing chromatic number of the square lattice

received quite some attention in recent years. Fiala et al. [9] improved the lower

bound to 10, and in [7], it is improved further to 12. Soukal and Holub [12] used

a computer to better the upper bound to 17. The packing chromatic number of

lattices, trees, and Cartesian products in general is also considered in [5] and [10].

4
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Determining the packing chromatic number is considered to be difficult. In fact,

finding χρ for general graph is NP-complete [11], and deciding whether χρ(G) ≤ 4

is also NP-complete. In [8], Fiala and Golovach showed that the decision whether a

tree allows a packing coloring with at most k classes is NP-complete.

Jacobs, Jonck and Joubert in [13] examined the packing chromatic number of the

Cartesian product of C4 and Cq. They proved, using a theoretical approach, that

9 ≤ χρ(C42Cq) ≤ 11 for q = 4t with t ≥ 3. Lower bounds for the packing chromatic

number of 3-regular graphs in have also been studied recently.

Of particular interest to us is the following theorem of Sloper [15] which shows

that the packing chromatic number of the infinite binary tree is 7. He defines an

eccentric coloring of a graph G in the following way.

An eccentric coloring of a graph G = (V,E) is a function color : V → N such that

1. For all u, v ∈ V , (color(u) = color(v))⇒ d(u, v) > color(u)

2. For all v ∈ V , color(v) ≤ e(v) where e(v) = maxu∈V {d(v, u)}

Note that the first condition is the definition of a packing coloring. A complete

binary tree is a tree where all vertices have degree 1, 2, or 3.

Theorem 2.1. Any complete binary tree of height of three or more is eccentrically

colorable with 7 colors or less.

His proof relies on the following definition:

An expandable eccentric coloring of a complete binary tree T = (V,E) is a coloring

such that

1. For all u, v ∈ V , (color(u) = color(v))⇒ d(u, v) > color(u)

2. For all v ∈ V , color(v) ≤ e(v) where e(v) = maxu∈V {d(v, u)}

3. The root (level 1) is colored 1

5
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4. All vertices on odd levels are colored 1

5. Every vertex colored 1 has at least one child colored 2 or 3

6. color(v) = 6 and color(u) = 7 imples d(u, v) ≥ 5

7. color(p) ∈ {4, 5, 6, 7} implies p’s children each have children colored 2 and 3

8. For all u ∈ V , color(u) ≤ 7

1

2 3

1 1 1 1

4 3 5 3 4 2 5 2

Figure 2.1 Expandable eccentric coloring

See Figure 2.1 for an example of an expandable eccentric coloring of a complete

binary tree of height 4.

Lemma 2.1. An expandable eccentric coloring of a complete binary tree of height n

can be extended to an expandable eccentric coloring of height (n+ 1).

Proof. We construct the eccentric coloring for the height (n+ 1) tree by coloring the

first n levels and showing that the vertices on the (n+ 1) level can always be colored

according to the expandable coloring rules.

First note, if n is even then by rule 4 of the definition, the vertices at level n− 1

must all have color 1 and hence, the vertices at level n+ 1 may be colored 1.

6
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So, we may assume n is odd. Note that all vertices at level n are colored 1 and

hence no vertex at level n+ 1 may have the color 1. Consider a leaf u at level n+ 1

and its grandparent p. If color(p) ∈ {4, 5, 6, 7} then u and its sibling, say v, are

assigned the colors 2 and 3 (order does not matter). See Figure 2.2.

We now consider the case when color(p) = 2 (the case when color(p) = 3 is

handled similarly). Since for any grandchild j of p, d(j, p) = 2, we have color(j) 6= 2.

Let u, v, w, z be ps grandchildren with pairs of siblings {u, v} and {w, z}. We consider

all vertices at distance at most 6 from u, v, w, and z and on even levels. Note that

any vertex at distance 7 from u, v, w, or z must be on an odd level and is already

colored 1. By rule number 5, two of ps grandchildren (which are not siblings) must

receive the color 3. Without loss of generality suppose color(v) = color(z) = 3. For

the rest of the proof, we refer to the labeling found in Figure 2.3.

1

i

1 1

2 3 3 2

p

u v

Figure 2.2 A coloring of level n+ 1 if color(p) ∈ {4, 5, 6, 7}

Observe that the vertices g and h (and their siblings) are on level n+ 1. If g and

h have not been colored, they do not interfere with the coloring of u and w. Thus,

we may assume that g and h have been colored according to the expandable coloring

rules. Note that by rule 5, g, h, and c’s siblings must all be colored either 2 or 3.

7
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1

2p b

1 1 1 1

u
3
v w

3
z g

2/3
h

2/3

a

1

c
2/3

1

y

x

Figure 2.3 The subtree examined when color(p) = 2

As color(u) 6= 2 or 3 and similarly, color(w) 6= 2 or 3, by rule 8 we have color(u) ∈

{4, 5, 6, 7} and color(w) ∈ {4, 5, 6, 7}. We must show that we can always color u and

w with these colors. There are four cases to consider depending on the color of p’s

grandparent, a.

For convenience, we say that a vertex j blocks color α from vertex k if and only

if color(j) = α and d(j, k) ≤ α, that is, coloring vertex k with color α would violate

rule 1.

Case 2.1. color(a) ∈ {1, 2}

This is impossible due to rule 1.

Case 2.2. color(a) = 3

8
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As color(a) = 3 and color(p) = 2 we have that color(b) /∈ {2, 3} and hence

color(b) ∈ {4, 5, 6, 7}. Then, by rule 7, color(g) ∈ {2, 3} and color(h) ∈ {2, 3}. Note

that d(u, x) = d(u, y) = d(u, c) = 6 and similarly, the distance from w to x, y, and

c is also 6. Thus, the set {x, y, c} will block at most one color from {u,w}. As

d(u, b) = d(w, b) = 4, and d(b, x) = d(b, y) = d(b, c) = 4, the vertex b will block a

different color from {u,w}. This leaves at least two colors for u and w.

Case 2.3. color(a) ∈ {4, 5}

Note, as color(a) ∈ {4, 5}, by rule 7 we have color(b) = 3, color(c) ∈ {2, 3}, and

color(x) ∈ {2, 3}. By rule 5, we have color(y) is also either 2 or 3. Thus, we have

either color(g) ∈ {4, 5} and color(h) ∈ {6, 7} or vise versa but not both by rule 6.

Hence, there are at least two colors for u and w contained in the set {4, 5, 6, 7} as

d(u, {g, h}) = d(w, {g, h}) = 6.

Case 2.4. color(a) ∈ {6, 7}

Since color(a) ∈ {6, 7}, by rule 7 we have color(b) = 3, color(c) ∈ {2, 3}, and

color(x) ∈ {2, 3}. By rule 5, we have color(y) is also either 2 or 3. As d(u, {g, h}) =

d(w, {g, h}) = 6, the vertices g and h can not block colors 4 and 5 from u and w.

Thus, we may color the vertices u and w with colors 4 and 5.

Therefore, we have shown it is possible to color any leaf at level n + 1 according

to the expandable coloring rules, assuming the other leaves are colored according to

the rules or are uncolored. Hence, we may color all of level n+ 1.

The proof of Theorem 2.1 follows immediately by induction using the example in

Figure 2.1 (without leaves) as a base case.

Surprisingly, Sloper’s theorem can not be extended to complete k-ary trees with

k ≥ 3. A k-ary tree is a tree T such that for all v ∈ V (T ), dT (v) ≤ k + 1. We can

inductively define the complete k-ary tree, Ti:

9
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1. T1
..= 1 vertex, the root

2. Ti ..= Start with Ti−1 and append k new leaves to each leaf of Ti−1.

The height of a complete k-ary tree is h = d(root, leaf) + 1.

An eccentric broadcast coloring of a graph G = (V,E) is a function color : V → N

such that

1. For all u, v ∈ V , (color(u) = color(v))⇒ d(u, v) > color(u)

2. For all v ∈ V , color(v) ≤ diam(G)

Theorem 2.2. No complete k-ary tree, k ≥ 3, of height h, h ≥ 4 is eccentrically

broadcast-colorable.

10
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Chapter 3

Random Graphs

Erdős and Rényi are given credit for first implementing the use of random graphs in

probabilistic proofs of the existence of graphs with special properties such as arbi-

trarily large girth and chromatic number which had not been found constructively at

the time. The study of random regular graphs grew in popularity much later with

the works of Bender and Canfield, Bollobás, and Wormald. The study of random

graphs has in part grown due to developments in computer science. Random graphs

have applications in all areas in which complex networks need to be modeled.

Due to their relation to statistics, the first combinatorial structures to be studied

probabilistically were tournaments. In 1943, Szele applied probabilistic methods to

extremal problems in combinatorics. While it is not easy to construct a tournament

of order n with many Hamilton paths, Szele was able to show the existence of a

tournament of order n with at least n!/2n−1 Hamilton paths since this is the value

of the expected number of Hamilton paths. Erdős used similar arguments to give a

lower bound on the Ramsey number R(k).

One of the most interesting discoveries of Erdős and Rényi was that many graph

properties appear suddenly. That is, if we select a function F = F (n) then either

almost every graph GF has property P or almost every graph does not have property

P . The transition from a property being unlikely to very likely is, a lot of the time,

very swift. Consider a monotone (increasing) property P , i.e., a graph has property

P whenever one of its subgraphs has property P . Then, for some properties, we

can find a threshold function F0(n). If F (n) grows a bit faster or slower than F0(n)

11
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then almost every GF has or does not have property P , respectively. In [4], Bollobás

provides as an example, F0(n) = 1
2n log n, the threshold function for connectedness.

If f(n) → ∞ then almost every G is disconnected for F (n) = 1
2n(log n − f(n)) and

almost every G is connected for F (n) = 1
2n(log n+ f(n)).

In this paper, we will be concerned with random regular graphs. Random regular

graphs in particular have applications in computer science and biogeography. Results

on random regular graphs can often be extended to more general degree sequences.

Perhaps the first result on short cycles in random regular graphs of degree at least

3 was given by Wormald in 1978. He determined the expected number of triangles

in random cubic graphs using recurrence relations with the asymptotic result 4/3

obtained. This method of using recurrence relations and following with an asymptotic

analysis has not been able to be extended much further for general problems. The

method that has proven most fruitful has been a more direct probabilistic approach

with an initially asymptotic viewpoint.

3.1 Configuration Model

Let Gn,d denote the uniform probability space of d-regular graphs on the n vertices

{1, 2, . . . , n} (where dn is even). Sampling from Gn,d is equivalent to taking such a

graph uniformly at random (u.a.r.).

We can define another uniform probability space, Mn,d, of d-regular graphs on

the n vertices {1, 2, . . . , n} (where dn is even) in the following way. Partition a set

of dn points into n subsets v1, v2, . . . , vn of d points each. Let M denote a perfect

matching of the points into dn/2 pairs. Then M corresponds to a multi-graph (with

loops permitted) Gn,d(M) in which the subsets are now vertices and the pairs in

the matching are edges, that is, a pair (u, v) ∈ M corresponds to an edge (xi, yj) ∈

Gn,d(M) where u ∈ xi and v ∈ yj. Note that each (simple) graph corresponds to

(d!)n matchings so a regular graph can be chosen u.a.r. by choosing a matching and

12
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rejecting the result if it has loops or multiple edges. Note that non-simple graphs are

not produced uniformly at random since for each loop the number of corresponding

pairings is divided by 2, and for each k-tuple edge it is divided by k!. We may assume

that the points are the elements of {1, 2, . . . , n} × {1, 2, . . . , d} so that Gn,d(M) is

induced by a projection. This model was first introduced by Bollobás and is given

extensive treatment by Wormald in [16].

There are many ways to select a matching u.a.r. For instance, the points in the

matching can be chosen sequentially. The first point in the next random pair chosen

can be selected using any rule as long as the second point in that pair is chosen u.a.r.

from the remaining points.

The configuration model for random regular graphs can be extended to random

graphs with given degree sequence d1, . . . , dn. Let each subset vi contain di points and

select a perfect matching u.a.r. Restricting to no loops or multiple edges produces

u.a.r. graphs with the desired degree sequence.

For any matching M , Bender and Canfield [1] show that the probability that

Gn,d(M) is simple is given by

P(Gn,d(M) simple) = (1 + o(1)) exp
(

1− d2

4

)
for fixed d.

Now, since the number of perfect matchings on dn points is

(dn)!
(dn/2)!2dn/2 ,

the number of d-regular graphs on n vertices is

|Gn,d| ∼
√

2 exp
(

1− d2

4

)(
ddnd

ed(d!)2

)n/2
.

We note that f(n) ∼ g(n) means f(n) = (1 + o(1))g(n) as n → ∞. This result

was found independently by Bender and Canfield [1] and Wormald [17]. In 1979,

Bollobás gave a proof using the configuration model and showed that the formula

applied for d = d(n) ≤
√

2 log n− 1.

13
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Using the estimation for P(Gn,d(M) simple) and the relation between events in

Gn,d and matchings inMn,d, McKay and Wormald in [16] and [14] extend the previous

results using a switching method. We do not discuss this method here but refer the

reader to [16]. For an event H inMn,d define G(H) to be the event in Gn,d containing

all simple graphs of the form G(M) for some M ∈ H.

Corollary 3.1. Let d ≥ 1 be fixed, and let H be an event which is a.a.s. true in

Mn,d. Then G(H) is a.a.s. true in Gn,d.

Corollary 3.2. For d = o(
√
n) the number of d-regular graphs on n vertices is

(dn)!(
1
2dn

)
!2dn/2(d!)n

exp
(

1− d2

4 − d3

12n +O

(
d2

n

))
.

The following theorem of Bollobás and de la Vega [3] will be used in the proof of

our main result.

Theorem 3.1. Let G be a d-regular random graph on n vertices. Then, with high

probability, the diameter of G is

diam(G) = D = (1 + o(1)) logd−1(n).

14
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Chapter 4

Main Result

Theorem 4.1. For any integer d ≥ 4, there exists a positive constant cd such that

P(χρ(Gn,d) ≥ cdn) = 1− on(1).

We will need the following theorem and lemmas to prove our main result.

Theorem 4.2. Let G be a d-regular graph with girth g. If d ≥ 4, then χρ(G) ≥ g−1.

Proof. Let k = g− 2 and assume χρ(G) ≤ k. Then there is a partition V = V1 ∪V2 ∪

· · ·∪Vk such that for any 1 ≤ i ≤ k, and two distinct vertices u, v ∈ Vi, d(u, v) ≥ i. For

any vertex u, let Ni(u) be the set of vertices of distance at most i from u. Similarly,

for any edge uv, let Ni(uv) be the set of vertices of distance at most i from u or v.

Note that the induced graph on Ni(u) (for 1 ≤ i ≤ bk2c) is a tree depending only

on i. Similarly, the induced graph of G on Ni(uv) (for i = 1, . . . , bk2c − 1) is a tree

depending on i.

Thus,

|Ni(u)| = 1 + d+ d(d− 1) + · · ·+ d(d− 1)i−1 = d(d− 1)i − 2
d− 2

and

|Ni(uv)| = 2(1 + (d− 1) + · · ·+ (d− 1)i−1) = 2d(d− 1)i − 2
d− 2 .

Now, observe that |V2i∩Ni(u)| ≤ 1 for i = 1, 2, . . . , bk2c and |V2i−1∩Ni−1(uv)| ≤ 1

for i = 1, 2, . . . , dk2e. Also note that ∪uNi(u) and ∪uvNi(uv) cover all the vertices of

G evenly.

15



www.manaraa.com

Thus,

|V2i| ≤
n

|Ni(u)| = n(d− 2)
d(d− 1)i − 2 for 1 ≤ i ≤

⌊
k

2

⌋

and

|V2i−1| ≤
n

|Ni(uv)| = n(d− 2)
2d(d− 1)i − 2 for 1 ≤ i ≤

⌈
k

2

⌉
.

As the series φi(d) ..= ∑∞
i=1

d−2
d(d−1)i−2 and νi(d) ..= ∑∞

i=1
d−2

2d(d−1)i−2 converge and are

decreasing functions of d, we have φi(d) + νi(d) < 1 for all d ≥ 4. Hence,

n =
k∑
i=1
|Vi|

=
d k2 e∑
i=1
|V2i−1|+

b k2 c∑
i=1
|V2i|

≤
d k2 e∑
i=1

n(d− 2)
2d(d− 1)i − 2 +

b k2 c∑
i=1

n(d− 2)
d(d− 1)i − 2

< n(φi(d) + νi(d))

< n,

a contradiction.

Corollary 4.1. For any d ≥ 4 and any integer k, there exists a d-regular graph G

with χρ(G) ≥ k.

In the configuration model, the induced graph of G on Ni(u) is a tree with high

probability but we must account for the possibility of overlaps. We refer to the case

in which two subsets, say vi and vj, contain vertices which are matched to vertices of

a third subset, vk, as an overlap. Note that two overlaps occur with probability less

than ε. Let D = diam(Gn,d). Define fi(d) ..= d(d−1)i−2
(d−2) and gi(d) ..= 2d(d−1)i−2

(d−2) .

Lemma 4.1. Let u be a vertex of Gn,d and let Ni(u) denote the set of vertices of

distance at most i from u in Gn,d where 1 ≤ i ≤ (1 − o(1))D/2. For fixed u, with

probability 1−O( 1
n
), |Ni(u)| = fi(d), with probability O( 1

n
), |Ni(u)| = fi(d)− 1, and

with probability O( 1
n2 ), |Ni(u)| ≤ fi(d)− 2.
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Proof. First observe that

P (|Ni(u)| = fi(d)) =
(

1− d− 1
nd− 1

)(
1− 2d− 3

nd− 3

)
· · · (1− ξ)

≥ 1− d− 1
nd− 1 −

2d− 3
nd− 3 −

3d− 5
nd− 5 − · · · − ξ

≥ 1− cid

nd

= 1− ci
n

for ξ ..= (2fi(d)− 1)(d− 1) + 1
nd− (2fi(d)− 1) and ci = O(f 2

i (d)). Since i ≤ (1− o(1))D/2, we have

fi(d) = o(
√
n) and ci = o(n). As

P (∃ u s.t. |Ni(u)| = fi(d)− 2) ≤ n
ci
n2 ≤

ci
n

= o(1),

we need only consider the case in which there is one overlap. Hence,

P (|Ni(u)| ≤ fi(d)− 1) ≤
(
ci
n

)2
.

The proof of Lemma 4.2 follows a similar argument.

Lemma 4.2. Let uv be an edge of Gn,d and let Ni(uv) denote the set of vertices of

distance at most i from u or v in Gn,d, where 1 ≤ i ≤ (1−o(1))D/2. With probability

1− o(1), for all u, v, |Ni(uv)| ∈ {gi(d), gi(d)− 1}.

Next we consider the case when i ∈ [(1− o(1))D/2, 3D/4].

Lemma 4.3. Let u be a vertex of Gn,d and let Ni(u) denote the set of vertices of

distance at most i from u in Gn,d where (1− o(1))D/2 ≤ i ≤ 3D/4. With probability

1-o(1), for all u, fi(d)− 4 ≤ |Ni(u)| ≤ fi(d).

Proof. Let Av1,...,vα be the event that an overlap occurs at the subsets v1, . . . , vα.

Then,

P(Av1,...,vα) ≤
(

d− 1
nd− 1− 2fi(d)

)α
.
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Thus,

P(|Ni(u)| = fi(d)− α) ≤ P (∪Av1,...,vα)

≤
∑

v1,...,vα

P(Av1,...,vα)

≤ (fi(d))α
(

d− 1
nd− 1− 2fi(d)

)α
≤ c · n

3
4αn−α

≤ c
1

nα/4

= o( 1
n

),

since i ≤ 3D/4 we have fi(d) ≤ n
3
4 . Thus, for all u,

P(∃ u such that |Ni(u)| ≤ fi(d)− α) ≤ no(1/n) = o(1).

Hence, choosing α = 5, we have with probability 1−o(1) for all u, |Ni(u)| ≥ fi(d)−4 ≥
1
2fi(d).

Again, a similar argument proves the following Lemma.

Lemma 4.4. Let uv be an edge of Gn,d and let Ni(uv) denote the set of vertices of

distance at most i from u or v in Gn,d, where (1 − o(1))D/2 ≤ i ≤ 3D/4. With

probability 1− o(1), for all u, v, gi(d)− 4 ≤ |Ni(uv)| ≤ gi(d).

We may now prove the main result.

Proof. By Theorem 4.2, we may choose ε > 0 small enough so that ∑∞i=1
1

fi(d) +∑∞
i=1

1
gi(d) ≤ 1− ε. Now, there exists an M such that

∞∑
i=M

1
fi(d) +

∞∑
i=1

1
gi(d) <

ε

6 .

By Theorem 3.1, we may choose n0 such that for n ≥ n0, D = (1 + o(1)) logd−1(n) ≥

4M .
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Recall Gi = (V,Ei) where Ei = {(u, v) : d(u, v) ≤ i in G}.

Let i ∈ [3D/4 + 1, D]. Note that as α(Gi
n,d) ≤ α(Gj

n,d) for i ≥ j, where α is the

independence number, we have that |Vi| ≤ α(Gi
n,d) ≤ α(Gj

n,d) ≤ 2
fi(d)n for i ≥ j.

Thus, ∑D
i=3/4D |Vi| ≤

∑3/4D
j=D/2

2
fj(d)n <

ε
6n.

When i > D observe that |Vi| ≤ 1.

Thus,

n =
k∑
i=1
|Vi|

=
(1−o(1))D/2∑

i=1
|Vi|+

3D/4∑
i=(1+o(1))D/2+1

|Vi|+
D∑

i=3D/4+1
|Vi|+

∑
i>D

|Vi|

< (1− o(1/n))
(1+o(1))D/2∑

i=1

(
1

fi(d) + 1
gi(d)

)

+o(1/n)
(1+o(1))D/2∑

i=1

(
1

fi(d)− 1 + 1
gi(d)− 1

)

+
3D/4∑

i=(1−o(1))D/2

(
1

fi(d)− 5 + 1
gi(d)− 5

)
+

3/4D∑
j=D/2

2
fj(d)n+

∑
i>D

|Vi|

< (1− ε)n+ ε

6n+ ε

6n+ ε

6n+
∑
i>D

|Vi|

≤
(

1− ε

2

)
n+

∑
i>D

|Vi|

Thus, ∑i>D |Vi| ≥ ε
2n and hence, with high probability, χρ(Gn,d) ≥ cdn for some

constant cd.

In the future, we would like to determine how the packing chromatic number of

random cubic graphs behaves.

19



www.manaraa.com

Bibliography

[1] E. A. Bender and E.R. Canfield. “The asymptotic number of non-negative in-
teger matrices with given row and column sums”. In: Journal of Combinatorial
Theory 24 (1978), pp. 296–307.

[2] B. Bollobás. “A probabilistic proof of an asymptotic formula for the number
of labelled regular graphs”. In: European Journal of Combinatorics 1 (1980),
pp. 311–316.

[3] B. Bollobás and W. Fernandez de la Vega. “The diameter of random regular
graphs”. In: Combinatorica 2 (1982), pp. 125–134.

[4] Béla Bollobás. Random Graphs. Ed. by B. Bollobás et al. Cambridge Studies
in Advanced Mathematics 73. Cambridge University Press, 2001.

[5] B. Brešar, S. Klavžar, and D.F. Rall. “On the packing chromatic number of
Cartesian products, hexagonal lattice, and trees”. In: Discrete Applied Mathe-
matics 155 (2007), pp. 2303–2311.

[6] Reinhard Diestel. Graph Theory. Ed. by S. Axler and K.A. Ribet. 4th ed.
Vol. 173. Graduate Texts in Mathematics. Springer-Verlag Berlin Heidelberg,
2010.

[7] J. Ekstein et al. The packing chromatic number of the square lattice is at least
12. arXiv: 1003.2291v1. 2010.

[8] J. Fiala and P.A. Golovach. “Complexity of the packing coloring problem for
trees”. In: Discrete Applied Mathematics 158 (2010), pp. 771–778.

[9] J. Fiala, S. Klavžar, and B. Lidický. “The packing chromatic number of infinite
product graphs”. In: European Journal of Combinatorics 30 (2009), pp. 1101–
1113.

[10] A.S. Finbow and D.F. Rall. “On the packing chromatic number of some lat-
tices”. In: Discrete Applied Mathematics 158 (2010), pp. 1224–1228.

20



www.manaraa.com

[11] W. Goddard et al. “Broadcast chromatic numbers of graphs”. In: Ars Combi-
natoria 86 (2008), pp. 33–49.

[12] P. Holub and R. Soukal. “A note on the packing chromatic number of the square
lattice”. In: Electronic Journal of Combinatorics N17 (2010).

[13] Y. Jacobs, E. Jonck, and E. Joubert. “A lower bound for the packing chromatic
number of the Cartesian product of cycles”. In: Open Mathematics 11.7 (2013),
pp. 1344–1357.

[14] B.D. McKay and N.C. Wormald. “Asymptotic enumeration by degree sequence
of graphs with degrees o(n1/2)”. In: Combinatorica 11 (1991), pp. 369–382.

[15] Christian Sloper. “An eccentric coloring of trees”. In: Australian Journal of
Combinatorics 29 (2004), pp. 309–321.

[16] N.C. Wormald. Models of random regular graphs. Ed. by J.D. Lamb and D.A.
Preece. Vol. 276. London Mathematical Society Lecture Note Series. Cambridge:
Cambridge University Press, 1999, pp. 239–298.

[17] N.C. Wormald. “Some Problems in the Enumeration of Labelled Graphs”. PhD
thesis. University of Newcastle, 1978.

21


	University of South Carolina
	Scholar Commons
	2015

	The Packing Chromatic Number of Random d-regular Graphs
	Ann Wells Clifton
	Recommended Citation


	Acknowledgments
	Abstract
	Basic Definitions
	The Packing Chromatic Number
	Random Graphs
	Configuration Model

	Main Result
	Bibliography

